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Introduction

Collaborative software development across widely separated sites presents challenges for producing
quality code, avoiding conflicts, adapting to changing requirements and maintaining a rapid release
schedule. The University of Utah, University of lowa and Brown University are collaborating on
development on the Westat open source SMS and other components of an end-to-end solution for the
NCS.

The key features and services we’ve created are designed to provide immediate feedback when new
code is submitted, as well as simplify the deployment process.

Features we’ve implemented include the Jenkins continuous integration (Cl) server for performing
automated builds, a Mercurial version control system that is well —suited to collaborative development,
agile project management using JIRA, and testing methodologies.

Methods

Continuous Integration (CI)

Continuous integration practices allow us to make frequent releases and detect software failures early.
Among these practices are fully-automated “one-button” builds, automated tests, and integration of the
build with the version control system. This drastically shortens the cycle from implementation to
deployment.

We are using the Jenkins Cl server to build, test and deploy software. All of the Westat modules are
now building under Jenkins. Builds are fully-automated. Jenkins is an extremely flexible system that can
check the source code out of version control, build it, run unit tests, deploy it to web servers, and run
integration tests. Jenkins can signal developers via email or SMS in the event of a failed build.



Builds can be triggered manually, based on check-ins, changing dependencies or on a schedule. Multiple
distributed Jenkins servers can be “slaved” to a master server so that builds can be controlled and
configured from a single point. Multiple jobs can be linked in dependency trees so that one build can

trigger others.

A Cl server like Jenkins is extremely helpful for distributed collaboration. Check-ins can be done with
confidence that build and test failures will be caught immediately and the right folks will be notified.
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Test-Driven Design (TDD) and Refactoring
As we implement new features and fix issues in the SMS, automated tests will be written before

implementation. With TDD, we use short test-implementation cycles (on the order of 5-10 minutes).

This ensures that requirements are well-defined and that the implementation meets those

requirements. Automated tests run as part of the Cl build process. As more and more tests accumulate,

they become an excellent tool for regression testing, ensuring that new features and bug fixes don’t

break existing functionality.

As automated test code coverage grows, we gain the confidence to refactor the code to keep the design

simple and easy to maintain.



Automated tests are indispensible for distributed teams. New functionality and bug fixes are defined in
the tests, making them easy to find. Tests keep distributed teams from stepping on each other’s toes
when collaborating on the same code-base.

Tests and other agile methodologies also reduce the cost of change. In traditional waterfall methods,
the cost of change late in a project increases dramatically. With test-driven design, the cost of change is
dramatically reduced because bugs introduced by changes are found much more quickly. Feature
additions, bug fixes and design changes can be made with confidence.
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3 Cost of change with traditional development methods
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4 Cost of change with TDD and agile methods

We are currently using a couple of software tools for TDD: NUnit — a test framework for .NET
applications, and HtmlUnit, a tool for automating the testing of web applications. These tools make it
very easy to run tests directly from the IDE, shortening the test-implementation cycle.
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Project Planning and Tracking

We use agile project planning and tracking methodologies to ensure business value is maximized and
that we have up-to-date projections. Agile methodologies focus on the requirements with the highest
business value and/or technical risk first. In contrast to the waterfall method, requirements are fleshed
out and designed on a just-in-time basis.

For distributed teams, a web-based project planning and tracking tool is critical. This makes
collaboration much easier and ensures that everyone has current information. Participants can
volunteer for and estimate work without having lengthy meetings. Project planning can easily be done
with a simple web conferencing tool and a phone. We’re currently using Mikogo, a very capable free
web-conferencing application that allows us to share and control any participant’s screen.

We are using Atlassian’s web-based JIRA system for planning and tracking. JIRA’s Greenhopper plugin is
well adapted to the “Scrum” methodology. Requirements and issues can be quickly and easily
reprioritized using drag-and-drop functionality. Estimates of scope, deadlines and business value are
included and are simple to change. Task assignments minimize duplication of effort. Burndown charts
show up-to-date projections of velocity and completion dates. JIRA and Greenhopper help us to make
sure all collaborators have up-to-the-minute information on the status of the project.
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Change Control

Managing change is critical to the success of any informatics project. Incoming issues must be weighed
for cost, technical risk, business value and scope. Change control boards (CCBs) are organized to triage
and manage issues. Workflows must be designed to ensure that issues are tracked from cradle to grave.

Again, a web-based issue tracking system is critical for distributed teams. Collaborators must be able to
quickly view and modify priorities and scope, ensuring that we’re always working on the highest priority
tasks. Having a web-based tool makes change control calls quick and painless.

We use the JIRA system for managing issues. Using the same tool for issue tracking and project planning
and management makes it easy to move issues in and out of a project.



Software Configuration Management (SCM)

An SCM policy and capable version control system are essential for distributed software development.
Standards must be put in place to insure that new code is adequately tested, conforms to style guides
and meets requirements.

Traditional version control systems such as CVS and Subversion are not well-suited to distributed
development. Merging code between different teams is painful.

The latest generation of version control systems, like Git and Mercurial is much better adapted to
distributed teams. The ability for each collaborator to clone the repository and maintain private
sandboxes simplifies the task of testing changes before committing to the core repository.

We chose the Mercurial version control system. Mercurial is easy to learn and quick to set up. Source
code repositories can be cloned and merged easily, allowing teams to freely and safely change and test
code before merging it back into the core repository. Mercurial has an excellent tool chain, including
GUI and command-line tools, and plugins for most IDEs.
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9 Code check-in, build, deployment and test in under 2 minutes

Results

We are in the very early stages of development. However, already, the tools and systems we’ve put in
place are already delivering great value. For example, with the Mercurial version control system and the
Jenkins Cl system, the turn-around time from code change to deployment is under 2 minutes. Among
other things, this makes it possible to play “what-if” scenarios with our customers. We can try out
changes and immediately demo them. As we work to get the Westat SMS working within our
environment, the ability to do rapid trial-and-error changes is critical. The tools we’ve adopted mean
that we’re able to get the system up and running much more quickly. With the help of these procedures
and tools, we now have all of the Westat components working on our systems.

Conclusion

Change is a constant in the NCS. Few study centers can field a development team capable of coping
with the pace of change, so collaboration is essential to meeting the needs of the study. The tools and
processes we’ve adopted facilitate collaboration, accelerate development, and make it possible to adapt
to changes in software and protocol.





