
    
      

 

      

   
  

   
   
   

 
  

   

    

   

 

 

    

   

 

  

 

  

    

 

  

  

  

   

Foundations for Collaborative Software 
Development on the Westat Open Source 
SMS 

NCS University of Utah Study Center 

Brennan Loyola – Clinical Data Manager 
Brett VanWagoner – Systems Administrator 
Chris Fahim – Systems Analyst/Programmer 
Terry Lacy – Senior Systems Analyst 
Yuan Wan – Systems Analyst/Programmer 

Introduction 
Collaborative software development across widely separated sites presents challenges for producing 

quality code, avoiding conflicts, adapting to changing requirements and maintaining a rapid release 

schedule.  The University of Utah, University of Iowa and Brown University are collaborating on 

development on the Westat open source SMS and other components of an end-to-end solution for the 

NCS. 

The key features and services we’ve created are designed to provide immediate feedback when new 

code is submitted, as well as simplify the deployment process. 

Features we’ve implemented include the Jenkins continuous integration (CI) server for performing 

automated builds, a Mercurial version control system that is well –suited to collaborative development, 

agile project management using JIRA, and testing methodologies. 

Methods 

Continuous Integration (CI) 

Continuous integration practices allow us to make frequent releases and detect software failures early.  

Among these practices are fully-automated “one-button” builds, automated tests, and integration of the 

build with the version control system. This drastically shortens the cycle from implementation to 

deployment. 

We are using the Jenkins CI server to build, test and deploy software.  All of the Westat modules are 

now building under Jenkins.  Builds are fully-automated.  Jenkins is an extremely flexible system that can 

check the source code out of version control, build it, run unit tests, deploy it to web servers, and run 

integration tests.  Jenkins can signal developers via email or SMS in the event of a failed build. 



    

 

 

  

 

  

Builds can be triggered manually, based on check-ins, changing dependencies or on a schedule.  Multiple 

distributed Jenkins servers can be “slaved” to a master server so that builds can be controlled and 

configured from a single point.  Multiple jobs can be linked in dependency trees so that one build can 

trigger others. 

A CI server like Jenkins is extremely helpful for distributed collaboration.  Check-ins can be done with 

confidence that build and test failures will be caught immediately and the right folks will be notified. 

1 - Jenkins Dashboard 



 

  

 

  

  

 

 

 

 

    

   

2 - Jenkins Project Screen 

Test-Driven Design (TDD) and Refactoring 

As we implement new features and fix issues in the SMS, automated tests will be written before 

implementation.  With TDD, we use short test-implementation cycles (on the order of 5-10 minutes).  

This ensures that requirements are well-defined and that the implementation meets those 

requirements.  Automated tests run as part of the CI build process.  As more and more tests accumulate, 

they become an excellent tool for regression testing, ensuring that new features and bug fixes don’t 

break existing functionality. 

As automated test code coverage grows, we gain the confidence to refactor the code to keep the design 

simple and easy to maintain. 



        

   

    

 

    

 

 

 

Automated tests are indispensible for distributed teams.  New functionality and bug fixes are defined in 

the tests, making them easy to find.  Tests keep distributed teams from stepping on each other’s toes 

when collaborating on the same code-base. 

Tests and other agile methodologies also reduce the cost of change.  In traditional waterfall methods, 

the cost of change late in a project increases dramatically.  With test-driven design, the cost of change is 

dramatically reduced because bugs introduced by changes are found much more quickly. Feature 

additions, bug fixes and design changes can be made with confidence. 

3 Cost of change with traditional development methods 



 

 

  

    

   

 

 

  

4 Cost of change with TDD and agile methods 

We are currently using a couple of software tools for TDD: NUnit – a test framework for .NET 

applications, and HtmlUnit, a tool for automating the testing of web applications. These tools make it 

very easy to run tests directly from the IDE, shortening the test-implementation cycle. 

5 An Automated NUnit Test 



 

  

    

   

     

 

 

 

   

  

 

   

     

 

Project Planning and Tracking 

We use agile project planning and tracking methodologies to ensure business value is maximized and 

that we have up-to-date projections. Agile methodologies focus on the requirements with the highest 

business value and/or technical risk first.  In contrast to the waterfall method, requirements are fleshed 

out and designed on a just-in-time basis. 

For distributed teams, a web-based project planning and tracking tool is critical. This makes 

collaboration much easier and ensures that everyone has current information. Participants can 

volunteer for and estimate work without having lengthy meetings.  Project planning can easily be done 

with a simple web conferencing tool and a phone.  We’re currently using Mikogo, a very capable free 

web-conferencing application that allows us to share and control any participant’s screen. 

We are using !tlassian’s web-based JIRA system for planning and tracking. JIRA’s Greenhopper plugin is 

well adapted to the “Scrum” methodology. Requirements and issues can be quickly and easily 

reprioritized using drag-and-drop functionality. Estimates of scope, deadlines and business value are 

included and are simple to change.  Task assignments minimize duplication of effort.  Burndown charts 

show up-to-date projections of velocity and completion dates. JIRA and Greenhopper help us to make 

sure all collaborators have up-to-the-minute information on the status of the project. 



 

 6 JIRA Project Planning 



 

 

 

  

   

 

    

    

 

   

   

7 JIRA Burndown Chart 

Change Control 

Managing change is critical to the success of any informatics project.  Incoming issues must be weighed 

for cost, technical risk, business value and scope. Change control boards (CCBs) are organized to triage 

and manage issues.  Workflows must be designed to ensure that issues are tracked from cradle to grave. 

Again, a web-based issue tracking system is critical for distributed teams. Collaborators must be able to 

quickly view and modify priorities and scope, ensuring that we’re always working on the highest priority 

tasks.  Having a web-based tool makes change control calls quick and painless. 

We use the JIRA system for managing issues. Using the same tool for issue tracking and project planning 

and management makes it easy to move issues in and out of a project. 



 

   

 

 

 

 

    

   

 

   

    

   

 

 

 

Software Configuration Management (SCM) 

An SCM policy and capable version control system are essential for distributed software development. 

Standards must be put in place to insure that new code is adequately tested, conforms to style guides 

and meets requirements. 

Traditional version control systems such as CVS and Subversion are not well-suited to distributed 

development.  Merging code between different teams is painful. 

The latest generation of version control systems, like Git and Mercurial is much better adapted to 

distributed teams. The ability for each collaborator to clone the repository and maintain private 

sandboxes simplifies the task of testing changes before committing to the core repository. 

We chose the Mercurial version control system.  Mercurial is easy to learn and quick to set up.  Source 

code repositories can be cloned and merged easily, allowing teams to freely and safely change and test 

code before merging it back into the core repository. Mercurial has an excellent tool chain, including 

GUI and command-line tools, and plugins for most IDEs. 

8 Mercurial Web View 



 
  

 
  

 

  

   

      

     

   

    

 
    

   

 

 

9 Code check-in, build, deployment and test in under 2 minutes 

Results 
We are in the very early stages of development.  However, already, the tools and systems we’ve put in 

place are already delivering great value.  For example, with the Mercurial version control system and the 

Jenkins CI system, the turn-around time from code change to deployment is under 2 minutes.  Among 

other things, this makes it possible to play “what-if” scenarios with our customers.  We can try out 

changes and immediately demo them. As we work to get the Westat SMS working within our 

environment, the ability to do rapid trial-and-error changes is critical. The tools we’ve adopted mean 

that we’re able to get the system up and running much more quickly. With the help of these procedures 

and tools, we now have all of the Westat components working on our systems. 

Conclusion 
Change is a constant in the NCS. Few study centers can field a development team capable of coping 

with the pace of change, so collaboration is essential to meeting the needs of the study.  The tools and 

processes we’ve adopted facilitate collaboration, accelerate development, and make it possible to adapt 

to changes in software and protocol. 




