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The National Children’s Study is considering a wide spectrum of airborne pollutants that are 
hypothesized to potentially influence pregnancy outcomes, neurodevelopment, asthma, atopy, 
immune development, obesity, and pubertal development. In this article we summarize six applic
able exposure assessment lessons learned from the Centers for Children’s Environmental Health 
and Disease Prevention Research that may enhance the National Children’s Study: a) Selecting 
individual study subjects with a wide range of pollution exposure profiles maximizes spatial-scale 
exposure contrasts for key pollutants of study interest. b) In studies with large sample sizes, long 
duration, and diverse outcomes and exposures, exposure assessment efforts should rely on model
ing to provide estimates for the entire cohort, supported by subject-derived questionnaire data. 
c) Assessment of some exposures of interest requires individual measurements of exposures using 
snapshots of personal and microenvironmental exposures over short periods and/or in selected 
microenvironments. d) Understanding issues of spatial–temporal correlations of air pollutants, the 
surrogacy of specific pollutants for components of the complex mixture, and the exposure misclas
sification inherent in exposure estimates is critical in analysis and interpretation. e) “Usual” tem
poral, spatial, and physical patterns of activity can be used as modifiers of the exposure/outcome 
relationships. f) Biomarkers of exposure are useful for evaluation of specific exposures that have 
multiple routes of exposure. If these lessons are applied, the National Children’s Study offers a 
unique opportunity to assess the adverse effects of air pollution on interrelated health outcomes 
during the critical early life period. Key words: air pollution, airborne, ambient, Centers for 
Children’s Environmental Health and Disease Prevention Research, Children’s Centers, cohort 
study, direct measurement, exposure assessment, modeling, National Children’s Study, personal 
measurement. Environ Health Perspect 113:1447–1454 (2005). doi:10.1289/ehp.7673 available 
via http://dx.doi.org/ [Online 24 June 2005] 

A major study design challenge for the 
National Children’s Study will be to maxi
mize and characterize exposure contrasts in its 
cohort of 100,000 pregnant women residing 
in multiple locations across the United States, 
thereby enhancing the power to estimate 
exposure–response relationships from child
hood into adulthood. Multiple outcomes are 
of interest, including pregnancy outcomes, 
neurodevelopment, asthma, obesity, and 
pubertal development. Exposures to a wide 
spectrum of environmental pollutants are 
being considered for investigation in the 
study, including air pollutants of indoor and 
outdoor origin (National Children’s Study 
2004). 

Given the pollutants and health endpoints
currently under consideration, exposure assess
ment for the variable periods during preg
nancy, infancy, and childhood will be needed.
For asthma-related outcomes, daily, monthly,
yearly, and multiyear exposure metrics with
varying time integration periods may be
required. For pregnancy outcomes, monthly
estimates as well as estimates for critical periods
may be needed. For neurodevelopment,

 

 
 
 
 
 
 
 

monthly, yearly, and multiyear metrics may be 
most relevant. For these and other outcomes, 
time-integrated average levels may capture the 
effects of chronic exposure during specific peri
ods, but more discrete and intense sampling 
frequency or duration may be needed to better 
assess specific exposure–response relationships. 

The purpose of this article is to summa
rize exposure assessment lessons learned in 
the Centers for Children’s Environmental 
Health and Disease Prevention Research 
(hereafter Children’s Centers) for air pol
lutants and health outcomes of National 
Children’s Study interest. Exposures to aller
gens and bioaerosols are considered elsewhere 
in this mini-monograph. Many of the 
Children’s Centers have active research pro
grams involving the assessment of air pollu
tion in epidemiologic studies (Table 1). On 
the basis of experience of investigators from 
these centers, we provide recommendations 
for air pollution exposure assessment consid
eration in the study design, population selec
tion, exposure data collection, analysis, and 
interpretation of findings of the National 
Children’s Study. 

Lessons Learned in Air 
Pollution Exposure 
Assessment 

An essential design element of environmental 
epidemiologic studies is the a priori considera
tion of exposure assessment to ensure that the 
study exposure range will maximize the ability 
to evaluate key exposure–response relationships 
(Navidi et al. 1994, 1999). Study population 
selection and exposure assessment design are 
linked. Successful selections require considera
tion of the developmental time frames of inter
est and the biologic outcome mechanisms, in 
addition to understanding the spatial character
istics of airborne indoor and ambient expo
sures. One potentially successful design strategy 
is to maximize the number of contrasting pol
lution profiles among study subjects by using a 
quasi-factorial approach to select populations 
distributed over geographic regions with differ
ent pollution profiles (and/or including homes 
with different indoor sources and proximity to 
specific sources) (Gauderman et al. 2000). 

The National Children’s Study proposes to 
investigate the relationships between patterns 
and histories of exposure during critical peri
ods and the development of disease in later life. 
This creates an inherent tension because expo
sure assessment in large cohort studies requires 
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a compromise between the optimal infor
mation obtained from individual measure
ments and feasibility constraints related to
sampling methods, respondent burden, and
cost. Feasibility considerations likely dictate
that direct measurements will be limited to
subsets of subjects monitored for short time
periods (“snapshots”) in selected microenviron
ments, whereas exposure metrics used in
chronic effects analyses for the entire cohort
will be time-integrated over extended periods
(days to months). The proposed size and dura
tion of the National Children’s Study will
require the use of modeling to estimate time-
integrated exposures for the entire cohort even
when direct measurements using snapshots of
exposure are available for subsets of the cohort. 

 

 
 
 
 
 

 
 
 

 

 

Several modeling frameworks are appli
cable to the National Children’s Study. Basic
approaches rely on using questionnaire
responses as a surrogate for exposure and on
assigning exposures based on air pollutants
measured at a central monitor. The latter
approach has been successfully employed to
detect significant health effects (Dockery et al.
1993; Gauderman et al. 2002; Pope et al.
2002; Ritz et al. 2000; Samet et al. 2000).
More refined approaches allow for estimation
within communities using dispersion models
and information on transport, land use, and
meteorology (Brauer et al. 2002; English et al.
1999; Finkelstein et al. 2003; Hoek et al.
2002; Nafstad et al. 2004). Considerations for
modeled exposures include the availability of

 

 

 

 
 
 
 
 
 

 
 
 
 
 

 

 

high-quality input data on the appropriate
geographic scale and the need for validation
and calibration studies to enable exposure
uncertainty assignments. There are important
limitations of modeling air pollution expo
sures (Sarnat et al. 2001). Studies indicate that
for some pollutants, such as particulate matter
(PM) and volatile organic compounds, indoor
sources can predominate (Sax et al. 2004;
Tonne et al. 2004; Wallace et al. 2004). Any
strategy that relies on ambient modeling
should also attempt to assess indoor exposures
in subsamples of homes and thorough ques
tionnaire or inspection data that examine
important potential sources such as smoking
habits or the presence of an attached garage.
This is especially needed for air pollutants for

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

Table 1. Centers for Children’s Environmental Health and Disease Prevention Research air pollution exposure assessment experience relevant to the National
Children’s Study. 

 

Columbia University 
Johns Hopkins 

University 
University 

of Michigan 
USC Children’s 
Health Study 

University of 
Southern California 

Sample 
population 

500 pregnant women 
enrolled in the third 
trimester, and children 
followed from birth 
through age 5 

~ 250 children with asthma 
in urban Baltimore 
(ages 2–12) 

300 children, moderate to 
severe asthma, 7–11 years 
of age at baseline 

~ 6,000 public school 
children, 9–18 years of age 
in four specific age cohorts, 
from 12 southern California 
communities 

202 Los Angeles public 
school children, 6–16 
years of age with asthma 
and allergy to house dust 
mite or cockroach 

Outcome(s) Asthma and 
neurodevelopment; 
follow-up at multiple 
time points starting 
at birth; outcome metrics 
include questionnaires, 
biomarkers, clinical 
assessments, 
neurobehavioral 
assessments 

Asthma severity Daily symptom diaries and 
pulmonary function 
(PEF, FEV1) 

Pulmonary function (PFTs), 
symptoms (from annual 
medical and residential 
histories for 10 years), 
school-reported absences, 
food-frequency dietary 
information, physical 
activity, smoking and ETS, 
GxE interactions 

Asthma severity 

Study 
design 

Prospective birth cohort 
study with exposures 
and outcomes measured 
at multiple time points 
starting during the third 
trimester of pregnancy 

Longitudinal intervention 
trial (n = 100); longitudinal 
cohort study (n = 150); 
cross-sectional 
case–control study 

Longitudinal intervention 
trial 

Cross-sectional survey 
(n ~ 3,600); longitudinal 
cohort study (n ~ 5,600) 

Randomized trial 
of allergen-reduction 
strategies 

Agents 
assessed 

Personal PAH and pesticide 
exposures of mother in 
third trimester; dust 
allergens prenatal, 
12 months, 36 months, 
and 60 months; 
indoor/outdoor PM2.5, 
black carbon, and NO2 
at 12 months in subset; 
biomarkers for ETS, 
PAH–DNA adducts, 
pesticides 

Indoor/outdoor air pollutants 
(PM10, PM2.5, O3, nicotine); 
airborne endotoxin and 
mouse allergen; allergens in 
reservoir dust (cockroach, 
mouse, dust mite, cat, dog) 

Personal/indoor/outdoor 
air pollutants (PM10, PM2.5,
O3, nicotine); PM components 
(trace elements, EC, OC, 
endotoxin) 

Outdoor air pollutants 
[ O3, NO2, PM10, PM2.5, 
acid vapor (HNO3, formic, 
acetic) EC, OC, PM speciation 
(SO4, NO3, NH4, CI)], 
PAHs, endotoxin, air toxics, 
ETS, cigarette smoke 

Settled allergens 
(dust mite and cockroach) 
and endotoxin; 
cockroach counts 

Other 
exposure 
determinants 

GIS assessment of traffic 
proximity; social condition 
and stress; home 
characteristics 

Home inspection, time– 
activity data, GIS location, 
meteorology 

Home inspection, time– 
activity data, GIS location, 
meteorology 

Annual residential history by 
written survey; time–activity 
data, GIS location, traffic 
density, and proximity 

Housing characteristics 
and condition, reported 
and observed behavior, 
humidity and moisture 

Assessment 
strategy 

Prenatal exposures to PAH 
based on personal sampling 
and cord blood PAH–DNA 
adducts at birth; allergen 
exposures based on dust 
measures; postnatal air 
pollution exposures based 
on prediction model 
developed in subset 

Primary exposure assignment 
based on indoor air pollutants, 
and allergens; secondary 
exposure assignment using 
microenvironmental model 
with indoor/outdoor 
air pollution combined with 
time–activity information 

Primary exposure assignment 
using personal/indoor/outdoor 
air pollutants; secondary 
exposure assignment using 
microenvironmental model 

Primary exposure assignment 
based on community ambient 
monitors; secondary exposure 
assignment using 
microenvironmental model 
with outdoor air pollution 
combined with home 
characteristics and time– 
activity information 

Assessment of only indoor 
settled dust; no outdoor 
assessment 

Abbreviations: CI, chlorine; EC, elemental carbon; FEV1, forced expiratory volume in 1 sec; GIS, geographic information system; GxE, gene–environment interaction; OC, organic carbon; 
PEF, peak expiratory flow; PFT, pulmonary function test. 
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which indoor sources are often the most sig-
nificant contributors (Payne-Sturges et al.
2004). Understanding and assessing the role
of exposure measurement error in health
effects assessment are central issues for the
design and implementation of health effect
cohort studies (Jerrett and Finkelstein 2005). 

 
 
 
 
 

Finally, interpretation of National Chil-
dren’s Study findings will require information
about specific pollutant surrogates because of
the complex mixture of covarying pollutants
in respirable air (Manchester-Neesvig et al.
2003). Pollutants covary because they are
emitted from common sources or are pro-
duced by common atmospheric chemistry

 
 
 

 
 

 

and meteorologic processes. Identification of
source contributions within specific geographic
regions may enhance interpretability of single
pollutant associations with health outcomes
(Laden et al. 2000; Samet et al. 2000). 

 
 
 
 

In the following sections, we provide rec-
ommendations and issues that may need to be
considered in implementing them. These are
supported by some specific examples from the
Children’s Centers listed in Table 1. 

 
 
 

Specific Recommendations

National Children’s Study subject selection.
Study populations should be selected to maxi
mize spatial exposure contrasts for the pollutants


 


 

of interest. Because multiple pollutants are of
interest for the National Children’s Study,
priorities must be established to allow identi
fication of individuals with a wide range of
exposure profiles for those key pollutants of
study interest. 

 
 

 
 

Issues to consider include spatial scale vari
ations of pollutants, in order to select a study
population that maximizes exposure contrasts
(Table 2). Table 2 identifies the spatial scales
of variability for ambient pollutants to con
sider in the study design for the National
Children’s Study. The scales are categorized as
regional (100–1,000 km), urban (4–50 km),
neighborhood (50 m to 4 km), and household
(≤ 50 m, including outdoor and indoor
microenvironments). For some exposures,
contrast in exposure can be achieved by con
sidering indoor sources and behavior (e.g.,
smoking vs. nonsmoking homes), if indoor-
source pollutant health effects are of interest.
For PM, the spatial scale variability of impor
tance depends on the constituents of interest.
For example, elemental carbon (EC) from
ambient primary combustion processes varies
on urban and neighborhood scales. Indoor
sources from combustion also contribute to
personal EC exposure (LaRosa et al. 2002). In
contrast, particulate sulfates typically vary on a
regional scale. To maximize exposure gradi
ents to EC, subjects would need to be selected
on a neighborhood scale, such as based on dis
tance to busy roadways. Sulfates’ regional
nature would be better reflected in a subject
selection scheme involving different regions of
the United States. 

 
 
 

 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

 

 
 
 

To select subjects based on exposure con
trasts for ambient pollutants (e.g., ozone, sul
fate), exposure data on geographic variation in
levels and spatial gradients over time are needed.
For criteria pollutants, existing data are available
from a national network of monitoring stations.
Data for many other pollutants of biologic inter
est may be sparse or nonexistent (e.g., EC and
air toxics). In addition, for other pollutants with
both indoor and outdoor sources (e.g., PM
mass, nitrogen oxides, volatile organic com
pounds), much of the variability in exposure is
driven by indoor source activity and/or very
proximate local sources (e.g., traffic). For these
pollutants, levels may need to be measured or
modeled with the appropriate spatial and tem
poral resolution in pilot studies to ascertain the
appropriate spatial, temporal, and behavioral
determinants. In addition to variable pollutant
source strengths, subject-specific temporal–spa
tial–physical patterns of activity may meaning
fully affect both within and between-group
exposure assignments. Capturing this variability
in applicably useful ways for large study popula
tion studies is challenging and often a multi
faceted approach using self-administered
questionnaires, walk-through surveys, instru-
ment deployments, and sentinel monitoring.
 

 
 
 
 

 
 
 

 
 
 
 

 
 
 

 
 

 

Table 2. Spatial scales of variability for ambient air pollutants. 

Compound 
Regional scale 
(100–1,000 km) 

Urban scale 
(4–50 km) 

Neighborhood scale 
(50 m to 4 km) 

Household scale 
(≤ 50 m) outdoors 

and indoor 

Primary PM2.5 constituents 
EC from combustion x x x 
Organics, including PAHs x x 
Metals, including chromium VI, 

cadmium, lead, beryllium,
 
nickel, arsenic, iron,
 
manganese
 

x x x 

Other constituents from road 
dust, wood smoke,
 
construction dust, and
 
industrial sources
 

x x
 

Secondary PM2.5 constituents 
Sulfate x 
Nitrate x x 
Ammonium x x 
Secondary organics x x 

Primary PM2.5–10 constituents 
Organics, including PAHs x x x 
Metals, including chromium VI, 

cadmium, lead, beryllium,
 
nickel, arsenic, iron,
 
manganese
 

x x 

Other constituents from road 
dust, wood smoke,
 
construction dust, and
 
industrial sources
 

x x
 

Primary PM > 10  constituents 
Pollen grains x x 

O3 x x 
Nitric oxide x x 
NO2 x x 
Sulfur dioxide x x 
Carbon monoxide x x 
Volatile organic compounds 

Benzene x x 
1,3-Butadiene x x 
Formaldehyde x x 
Acetaldehyde x x 
Acrolein x x 
Vinyl chloride x x 
Carbon tetrachloride x x 
Chloroform x x 
Propylene dichloride x x 
Methyl chloride x x 
Trichloroethylene x x 
Tetrachloroethylene x x 
Naphthalene x x 

Mercury x x 

Bioaerosols, including endotoxin, house dust allergens, fungal spores, and pollen grains, also vary considerably on the
household and neighborhood scales; however, they were not included in this analysis. 
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Because several pollutants of interest for
the National Children’s Study are regional
in nature, subject selection from areas with
contrasting pollution profiles is likely to be
most informative. The national scope of the
National Children’s Study provides the oppor
tunity to maximize the number of study pro
files. For example, the constituents of PM
< 2.5 µm in diameter (PM2.5) within a region
are highly correlated, but between regions the
correlations may be lower. PM2.5 sulfate is
higher in the eastern United States and lower
in the western United States, whereas PM2.5
nitrate is lower in the eastern United States and
higher in the western United States. Therefore,
the comparable effect of these PM2.5 con
stituents may be separable by study design.
Replication of pollution profiles in different
regions is also important to allow for effects of
geographic variables such as weather and other
confounding variables to be controlled in the
analyses (Jerrett et al. 2003a, 2003b; Krewski
et al. 2000; Peters 1997; Peters et al. 1999a).
Exposures within homes with common sources
are also highly correlated and may be separated
by design. 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

An example of the integration of these
approaches is the Southern California Chil
dren’s Health Study (CHS), a study performed
by investigators in the University of Southern
California (USC)/University of California at
Los Angeles Children’s Environmental Health
Center. The USC CHS is a multiyear cohort
study of several thousand southern California
school children (Berhane et al. 2004; Kunzli
et al. 2003; Peters 1997). The primary USC
CHS research question is whether ambient air
pollution causes chronic adverse respiratory
health effects during childhood and adolescent
growth and development. Almost 12,000 chil
dren from schools in 13 southern California
communities have been recruited into five
cohorts since the study began in 1993. 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

Communities were selected to maximize
differences in outdoor air pollutant concen
trations. To distinguish the effects of different
pollutants, communities were selected to
minimize the spatial correlations between
three priority study pollutants [O3, nitrogen
dioxide, and PM < 10 µm in diameter
(PM10)]. However, the full quasi-factorial
design could not be fulfilled because all the
potential pollution profiles do not occur in
nature. Specific community selections were
based on historical air pollution levels for sev
eral years before study inception, exposure
patterns, and census demographic data.
Because of differences in the number of loca
tions at which pollutants were measured and
the frequency and type of measurements
made, data available for selecting communi
ties were more reliable for O3 than for PM10,
and more reliable for PM10 than for NO2.
Demographically heterogeneous communities

 

 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 

were selected because they would be more
likely to exhibit overlapping distributions of
confounding risk factors and would allow
adjustments for confounding in the analysis.
Replication of exposure profiles was employed
to improve the chance of including demo
graphically comparable communities and to
allow estimation of residual variance within
pollution profiles. Additional details have been
described previously (Berhane et al. 2004;
Peters et al. 1999a, 1999b). This design
resulted in contrasting exposure profiles for
O3 and a package of correlated pollutants
(PM10, PM2.5, and NO2) primarily of mobile
source origin. This approach can be extended
to other pollutants, such as ultrafine particles
whose concentrations may also vary on a local
ized scale of ≤ 50 m. Selecting subjects within
communities based on the distance between
the home and the nearest busy roadway or
other traffic density metric may maximize the
exposure contrasts of ultrafines within the pro
files of other pollutants such as O3. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Other potential valuable exposure sam
pling designs might consider “matrix” sam
pling approaches, which would draw on
subsets of subjects for specific substudies or
specialty projects. In the larger perspective
however, maximizing differences in commu
nity exposure profiles can provide a rich pop
ulation base from which to develop and
inform multiple studies seeking to optimize
the National Children’s Study effort. 

 
 
 

 
 

Exposure metrics. Because of the large size,
long duration, and diversity of outcomes and
exposures of interest in the proposed National
Children’s Study, the exposure assessment
effort should rely on modeling to provide
estimates for the entire cohort, supported by
subject-derived questionnaire data. Necessary
survey information on temporal–spatial–
physical patterns of activity and household
characteristics can be collected for the entire
cohort, and targeted exposure substudies can
be performed in selected subsamples of study
subjects. 

 
 
 
 
 
 
 
 
 
 
 
 

Issues to consider include modeling for
large-scale investigations over long periods
(e.g., the National Children’s Study), which is
currently the only feasible approach for assign
ing exposure estimates for the entire cohort.
This is especially true for ambient air pollu
tants that display significant spatial variation
on urban, neighborhood, or household spatial
scales. 

 
 
 

 

 
 

A variety of exposure assessment modeling
approaches are available, including proximity-
based, geostatistical, land-use regression
(LUR), dispersion, integrated meteorologic
emission, and hybrid approaches involving
personal sampling in combination with
one or more of the above methods (Jerrett
et al. 2004). Each model varies by data input
requirements, software/hardware, technical

 

 
 
 
 
 
 
 

expertise, and resulting accuracy and extrapo
lation potential. 

Modeled estimates can be refined using
targeted substudies designed to measure levels
at geographic locations over time on the scale
of spatial and temporal variation of the pollu
tants under study. The time resolution of the
exposure estimate needs to be appropriately
matched to outcomes to capture effects of fre
quency, magnitude, and duration of peak or
episodic exposure events that may have effects
during windows of vulnerability. Long-term
average exposures, including average peak lev
els or hours above threshold levels, are likely
more important for relationships with chronic
disease, but this assumption needs to be eval
uated for specific agents and outcomes of
focus in the National Children’s Study. 

 

 

 
 
 

 
 

 

 

 

 

Data availability and quality for model
input are critically important. Central-site
monitoring data can be used to assign exposure
for outdoor environments, but the utility of
this assignment will depend on the relative
variability of the pollutant across the sampling
area of interest (intra- vs. intercommunity vari
ability issues). Estimates of indoor concentra
tions require individual information on home
operating conditions, home source profiles and
activity, factors influencing the penetration of
outdoor pollutants and/or the dilution of pol
lutants of indoor origin (LaRosa et al. 2002;
Navidi et al. 1999). Information about tem
poral, spatial, and physical activity patterns
are also important but are likely to have insuf
ficient time resolution over the period of
study interest. Broader categories of “usual”
patterns of activity, household operation, and
susceptibility factors can be considered as
modifying factors for the exposure–response
relationship using available central-site moni
toring data (Gauderman et al. 2000; Janssen
et al. 2002). 

 
 
 
 
 
 

 
 
 

 

 

 
 
 
 
 

 

An existing national system of central site
monitors collects continuous data on criteria
air pollutants and more limited data on haz
ardous air pollutants [U.S. Environmental
Protection Agency (EPA) 2004]. It is possible
to add additional instruments to monitoring
sites to measure additional pollutants or speci
ate PM at reasonable cost. However, the use
of central-site monitoring data for epidemiol
ogy studies requires a quality assurance activ
ity beyond that which is used for regulatory
activities as well as methods to address miss
ing data issues. The Health Effects Institute
recently funded a study to compile existing
estimates of air toxics into a coherent national
database. When available, these data may
contribute to the National Children’s Study,
and selection of the sampling sites for the
National Children’s Study should take into
account the location of existing and upcom
ing monitoring data. No similar monitoring
network exists to assess exposure from indoor
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sources, which may need to rely on question
naire information and substudies across
regions. 

 

Modeling of pollutants with large intra-
community variation requires additional com
munity measurements. Substudies can be
designed to exploit obtainable information for
modeling study subject exposures (Jerrett et al.
2005). These additional microenvironmental
measurements can be used for fitting models to
better estimate exposure, for model validation,
and for assessment of errors in exposure assign
ments. Calibration studies using repeated per
sonal monitoring may be designed and
conducted to validate the exposure estimates
and correct for exposure error in the analysis
(Berhane et al. 2004; Fraser and Stram 2001;
Mallick et al. 2002; Stram et al. 1995). 

 
 
 
 
 
 

 
 
 
 

An illustration of these approaches may be
seen in the USC CHS. The USC CHS frame
work employed a hierarchical approach for
estimating exposure, ranging from the coarsest
spatial estimates based on community pollu
tant levels measured at a single central monitor
per community, to the finest spatial-scale esti
mates based on integrated models for individ
ual exposure assessment. The framework
involved the following pollutant measurement
and modeling levels: a) continuous monitoring
of O3, NO2, and PM10, and of PM2.5 mass
and composition on a time-integrated 14-day
basis, at a central monitoring station in each
community; b) measurement of selected pollu
tants at multiple locations within each com
munity; and c) adjustment of the central site
monitor to the levels around children’s homes
and schools based on a limited number of field
measurements. This framework is augmented
by a) modeling of vehicle emissions using
geostatistical methods and spatial dispersion
models, b) estimating outdoor pollutant con
centrations at schools and homes for the entire
study population using spatial statistical mod
els in a hybrid microenvironmental approach,
and c) modeling individual exposure estimates
for the entire study population using unified
modeling methods that integrated information
with different spatial and temporal resolutions.
These unified methods include community
monitored pollutant levels, studies of indoor
and outdoor levels in homes and schools; step
counters; questionnaire-based data on time–
activity patterns including commuting pat
terns, traffic patterns, and housing characteris
tics; and appropriate accounting of uncertainty
in the exposure estimates. 

 

 
 

 

 
 
 
 
 
 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

 

The USC CHS developed a microenvi
ronmental exposure model that, in principle,
can provide estimates of exposures to pollu
tants of ambient origin in five microenviron
ments. These include residential outdoors,
residential indoors, school outdoors, school
indoors, and inside vehicles. The exposure
model uses individual-level time–activity and

 

 
 
 
 

housing survey data, residence and school-
level traffic model estimates, and community-
level air quality measurement data and
regional transport factors to estimate short-
term and long-term individual exposures. The
model estimates show the largest amount of
within-community variations in individual
exposures of any of the models; however, vali
dating these types of models is difficult and
resource intensive (Peters 1997). 

 

 
 
 

 

Newer modeling strategies such as LUR
models are promising. LUR employs the pol
lutant of interest as the dependent variable
and proximate land use, traffic, and physical
environmental variables as independent pre
dictors. The methodology seeks to predict pol
lution concentrations at a given site based on
surrounding land use and traffic characteris
tics. The incorporation of land use variables
into the interpolation algorithm detects small-
area variations in air pollution more effectively
than do standard methods of interpolation
(i.e., kriging) (Briggs et al. 1997, 2000; Lebret
et al. 2000). These methods are promising for
the National Children’s Study because they
can be extrapolated, based on land use cover
age, without need for extensive monitoring in
each location. Most major urban centers
maintain land use information, and the U.S.
Census has much of the information needed
on population density and employment struc
tures. The National Children’s Study could
support the monitoring needed to calibrate
LUR models that are regionally representative
of broad land use and emission patterns.
Derived coefficients could then be applied to
other places within the region without need
for extensive monitoring. 

 

 
 

 

 

 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

Use of limited substudies for exposure
refinement. Assessment of some exposures of
interest will require individual measurements
of exposures using snapshots of personal and
microenvironmental exposures over short peri
ods and/or in selected microenvironments. 

 
 
 
 

Issues to consider include the large number
of interrelated factors that are important in
designing exposure substudies. These include
the substudy’s purpose, the population sample
to include, whether personal or microenviron
mental samples should be collected, the
respondent burden, study feasibility, sample
collection and analytic costs, temporal varia
tion of exposure, subject activity patterns,
household operation by residents, and uses in
model validation and calibration. 

 
 
 
 

 
 

 
 

These elements are nicely illustrated in the
Columbia Pregnancy Cohort Study (PCS), a
study performed by the Columbia University
Center for Children’s Environmental Health,
which has focused on the effects of pre- and
postnatal exposures to air pollution on birth
outcomes and neurodevelopmental and respira
tory health outcomes in childhood via through
recruitment and follow-up of pregnant women

 
 
 
 
 
 

 
 

and their offspring (Miller et al. 2001; Perera
et al. 2003, 2004a; Tonne et al. 2004; Whyatt
et al. 2003). In the Columbia PCS, direct air
pollution exposure assessment begins in the
third trimester of pregnancy with collection of a
48-hr personal sample of PM2.5 and vapors for
each pregnant woman. These samples are ana
lyzed for polycyclic aromatic hydrocarbon
(PAH) and pesticide concentrations (i.e., a
“snapshot” measurement representing “usual”
exposure). In a validation substudy, the investi
gators also collected sequential 2-week inte
grated indoor samples, analyzed for the same
variables as above, for the entire third trimester
(preferred over the personal snapshot as an
exposure surrogate of third-trimester exposures,
but obviously more intensive laborwise, cost-
wise, and subjectwise). A home dust sample was
also collected during the third trimester from
subjects and analyzed for standard allergens rel
evant to maternal exposures and possible prena
tal sensitization, based on evidence emerging
from the Columbia PCS (Miller et al. 2001). 

 
 
 
 
 
 

 
 
 

 
 
 
 

 
 

 

Another time interval of study exposure
interest was the first 2 years of life, when
infants/toddlers spend substantial amounts of
time in the home; this may be a critical expo
sure window for development of allergy and
asthma. Columbia PCS homes were visited
when the child reached 1 year of age, and a
dust sample was collected for allergen analysis.
Additional sampling was performed in a subset
of 25% of the homes, where 2-week samples of
indoor and outdoor air PM2.5, black carbon,
and NO2 were collected. These samples are
being used to develop and test a spatial LUR
model that will then be used to estimate expo
sures in the full cohort that are representative
of those occurring in early childhood. 

 
 
 

 
 
 
 
 
 
 
 
 

 

As a part of its investigations of childhood
asthma in Baltimore, Maryland, the Johns
Hopkins Center for Asthma in the Urban
Environment (JHU Center) has conducted an
intervention trial and a cohort study of asthma
morbidity (Breysse et al. 2005; Swartz et al.
2004). The exposure assessment efforts for
these studies include indoor and outdoor air
pollution as well as indoor allergens in approx
imately 400 homes. The major focus of these
studies was indoor air where investigators
assessed 3-day average indoor PM10, PM2.5,
NO2, O3, and nicotine at 3-month intervals
(Breysse et al. 2005). In addition, 3-day time
resolved PM was assessed using a data-logging
nephalometer. Ambient PM air pollution was
assessed using a monitoring site centrally
located to the study area. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Results from these studies demonstrate the
importance of assessing indoor air. Children,
particularly young children, spend the great
majority of their time in the home. Others
have noted (Wallace et al. 2004) that indoor
PM concentrations are generally higher than
outdoor levels, and cigarette smoking as well
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as other household activities are responsible
for this increase. In some cases, the PM contri
bution from cigarette smoking to indoor PM
is greater than that penetrating from outdoor
air. The JHU Center results indicate, for
example, that a single cigarette contributes
between 1 and 2 µg/m3 to indoor PM. In
addition, a strategy that uses repeat measures
allows larger time frame variability to be
assessed (e.g., seasonal). 

 

 
 
 
 
 
 
 

Results from the Michigan Center for the
Environment and Children’s Health demon
strate the importance of focusing on the
home as an important microenvironment for
children’s exposure (Keeler et al. 2002; Yip
et al. 2004). An important lesson from these
studies is that home-based exposure assess
ments are feasible for studies involving hun
dreds of children and need to be considered
in the National Children’s Study. This con
clusion is particularly true for newborn chil
dren who spend essentially all of their time in
the home. The microenvironments of impor
tance include the indoor environment in a
range of housing types, because there is a
growing recognition that housing quality is an
important predictor of indoor air pollution
and can affect outdoor pollution penetration
rates as well as being a general risk factor for
poor health (Kingsley 2003). 

 

 
 
 
 

 

 

 
 
 
 
 
 

As described above, the USC CHS experi
ence suggests that exposure assignment accu
racy can be improved by conducting substudies
with a limited number of measurements
extended temporally and spatially. In evaluat
ing the minimal sampling needed to success
fully predict long-term exposures in study
communities, USC CHS investigators found
that the intraclass correlation between esti
mated annual average of pollutants, based on
2-week subset measurements, and the true
annual average was greater than 0.9 for O3,
NO2, and nitric oxide in southern California,
if two winter, two summer, and one spring
sample were obtained. Greater numbers of
samples did not appreciably improve the corre
lation. These results indicate that accurate esti
mates of the pollutant annual average levels can
be obtained at homes, schools, and other cen
tral site locations with a limited number of
samples. Local measurements can then be
combined with concurrent central site meas
urements to estimate neighborhood and house
hold scale concentrations for the entire cohort.
Although the optimum number of samples
may differ by region of the country or in differ
ent neighborhoods within communities,
depending on the pollutants of interest and
geographic and temporal variation in the
processes driving air pollution, this general
strategy may be of use in planning efficient
National Children’s Study substudies. 

 
 

 
 

 
 
 
 
 
 

 

 
 

 
 

 
 
 
 
 

Analytic and interpretation issues.
Understanding issues of spatial/temporal

 
 

correlations of air pollutants, the surrogacy of
specific pollutants for components of the
complex mixture, and the exposure misclassi
fication inherent in exposure estimates will be
critical in analyzing and interpreting National
Children’s Study findings. 

 
 

 
 

Issues to consider include the fact that air
pollutants occur as complex mixtures of gases
and particles, but coexisting constituents may
covary, based on their common sources or
photochemical pathways. The ambient level of
one pollutant may therefore be a surrogate for
other pollutants arising from the same source,
so interpretation of findings for individual
pollutants must account for this surrogacy
(Manchester-Neesvig et al. 2003; Sarnat et al.
2001). Identification of pollutant sources
therefore provides a potentially important
mechanism to evaluate source-specific health
effects and can ultimately lead to effective
strategies for reducing population exposure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Substudies among subjects in differing
geographic locations may be useful for defin
ing pollutant relationships. For example, in
assessing PM, chemical tracers have been iden
tified that can serve as “fingerprints” for indi
vidual sources, or source types, of air pollution
(Laden et al. 2000; Manchester-Neesvig et al.
2003; Sarnat et al. 2002). This type of infor
mation can be used to apportion contributions
to the measured PM mass on a per sample
basis, along with providing data critical to the
assessment and interpretation of health effects
associated with individual chemical compo
nents of PM. Quantitative assessments of
source contributions for large data sets are
often determined using a statistical receptor
modeling approach. This type of data analysis
is best suited to longitudinal study designs and
can be limiting because it may require collec
tion of a large number of samples to obtain
robust results. 

 

 

 
 

 
 
 
 

 
 
 
 
 

 

The recent successful development and
deployment of several types of continuous
portable PM mass and number monitors offer
the potential for producing real-time (< 5-min
interval) data. The continuous data collection
format of these samplers allows a better under
standing of source emission patterns and expo
sures, especially in urban environments, and
can be used to enhance investigations of short-
term peak exposures. These highly time-
resolved exposure data can be coupled with
personal time–activity pattern data to quanti
tatively identify exposures from specific emis
sion sources. To date, real-time PM samplers
do not yet offer the ability to determine PM
chemical speciation. A combination of
methodologic approaches (employing chemi
cal tracers and continuous PM number and
mass count information) may improve the
ability to identify specific sources and source
types contributing to the measured exposure
to PM and other pollutants. 

 
 
 
 
 

 

 

 
 
 

 
 
 
 

Exposure misclassification is a critical issue
for exposure assessment efforts, especially
modeled exposures. In most large cohort stud
ies, it is not possible to accurately measure the
true personal exposure of individuals over the
time interval that is most relevant for the out
comes of interest. Thus, virtually all exposure
assessments provide at best estimates of true
exposures, with some error. Errors may arise
because of temporal factors (e.g., the exposure
metric captures only a snapshot of the relevant
time interval) or spatial factors (e.g., the expo
sure metric is collected at a location different
from where the subject lives and breathes).
Additionally, inherent imprecision in the spe
cific method selected for study application
may also result in some measurement error.
For the results of the study to ultimately be
interpretable, it is important in designing the
study for investigators to analyze the nature of
the exposure misclassification errors that are
likely to be present. Quantitative estimates of
exposure errors can be obtained by carrying
out calibration substudies where results from
more complete exposure metrics are com
pared with results from the modeled metrics
(Berhane et al. 2004; Fraser and Stram 2001;
Mallick et al. 2002; Sarnat et al. 2001; Stram
et al. 1995). Bayesian statistical frameworks
may assist with assessing the impact of meas
urement error on the exposure–response rela
tionships (Berhane et al. 2004). 

 
 

 
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

Modifiers of exposure–outcome relation
ships. “Usual” temporal, spatial, and physical
patterns of activity can be used as modifiers of
the exposure–outcome relationships. Highly
time-resolved activity information over the
study period of interest may not be necessary,
and is not likely to be available, for all National
Children’s Study participants throughout the
study. Personal exposure estimates, based on
time in microenvironments, are likely to be
associated with large uncertainties. “Usual” pat
terns of activity, such as time usually spent out
doors, can be collected by questionnaire and
used as modifiers of exposure–outcome rela
tionships (Gauderman et al. 2002). Activity-
level assignments may be important in moving
from exposure to delivered dose of an airborne
pollutant to the lung. For example, for asthma
prevalence and incidence, USC CHS investiga
tors saw little association with community levels
of exposure. However, when physical activity
was considered, O3 was strongly associated with
asthma incidence (where variation entered from
increased ventilation rates associated with exer
cise and likely increased dose to the lung). An
important challenge for the National Children’s
Study is assessing activity patterns among
mothers, infants, and young children. 

 
 
 
 
 
 
 
 
 

 

 
 
 

 
 
 
 

 
 
 

For extremely large study populations
for which individual questionnaires may be
impractical to administer and/or collect, ran
domized sampling schemes or oversampling in
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certain nested subsamples of possible increased
interest may be worth careful consideration. 

 

Use of biomarkers. Biomarkers of exposure
offer utility for evaluation of specific exposures
that have multiple routes of exposure. For spe
cific airborne pollutants, exposure assessments
may need to consider multiple routes of
human exposure. In addition to inhalation,
dermal absorption and oral ingestion may be
important pathways of exposure for pollutants
of interest with regard to young children,
infants, and pregnant or lactating mothers.
The use of exposure biomarkers is one poten
tially valuable approach in this area (Weaver
et al. 1998). Interpreting the relationship
between these markers and exposures, how
ever, is a complex function of the timing and
routes of exposure, and of the pollutant toxi
cokinetics. As discussed above, temporal–spa
tial–physical patterns of activity will almost
surely affect this dynamic in important ways,
from modification of ventilation rates to facili
tated dermal absorption during periods of ele
vated, increased, or extended activities. As
exposure assessment tools, biomarkers offer
the potential advantage of integrating the net
effect of all of these factors in producing a
given internal dose for a given individual.
Such measurements may better represent true
health-relevant exposures for an individual
than any external measure of exposure can. 

 
 

 
 
 
 
 
 
 

 
 

 

 
 

 
 
 
 
 
 
 

Biomarker measurements are substantially
integrated into the exposure and health assess
ment designs of the Columbia PCS. From an
exposure perspective, biomarkers focus on
DNA-bound PAHs (Perera et al. 2004a,
2004b), pesticides in blood plasma and meco
nium (Perera et al. 2003; Whyatt et al. 2001,
2003, 2004), and the environmental tobacco
smoke (ETS) metabolite cotinine in urine
(Perera et al. 2004b), beginning with mater
nal and infant cord blood samples at birth,
and continuing with follow-up assessments in
the child at 2 and 5 years of age. PAH-DNA
adducts also can be viewed as early measures
of procarcinogenic health effects (Perera et al.
2004b). Other effect-related biomarkers focus
on the time course of sensitization to environ
mental allergens, including measurements of
maternal, cord-blood, and child IgE, and pro
duction of proinflammatory cytokines or pro
liferation of mononuclear cells in response to
specific allergens (Miller et al. 2001). 

 

 
 
 

 
 
 

 
 
 
 
 
 

 

 

The integration of newly developed pesti
cide biomarkers within the epidemiologic
design of the Columbia PCS has made possi
ble significant new advances in our under
standing of the health effects and patterns of
exposures to pesticides among urban women
and children (Perera et al. 2003; Whyatt et al.
2001, 2003, 2004). A wide range of pesticides
have been shown to be quantifiable in the
plasma of women and their newborns, with
significant correlations between maternal and

 

 
 
 
 
 
 
 

cord blood levels in many cases (Whyatt et al.
2003). For some but not all pesticides, corre
lations also were demonstrated between
plasma levels at birth (either cord blood or
maternal) and air measurements collected
during the third trimester of pregnancy. Cord
plasma, but not air, levels of the insecticide
chlorpyrifos and diazinon were significantly
associated with decreased birth weight and
length (Whyatt et al. 2004). Of particular sig
nificance, levels of several pesticides in both
air and plasma showed significant declines
across women enrolled before and after the
U.S. EPA insecticide phase-out (Whyatt et al.
2003). Furthermore, associations with adverse
birth outcomes were significant only for
infants born before the phase-out (Whyatt
et al. 2004). These findings illustrate the util
ity of well-targeted biomarker measurements,
in conjunction with health and external expo
sure measures, for birth cohort studies. 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Cotinine and nicotine as markers for ETS,
an important source of PM exposure, has a
long history of use in biomonitoring. Hair
nicotine has the potential to provide estimates
of ETS exposure over a 2–3 month period or
longer (Jaakkola and Jaakkola 1997), and
other nicotine metabolites (e.g. cotinine) may
be useful indicators of both exposure and
bioavailability. 

 
 
 
 
 
 
 
 

Summary 

The National Children’s Study offers a unique
opportunity to understand the adverse effects
of air pollution on a broad range of interre
lated outcomes during the critical period of
early life development and growth. Six recom
mendations for air pollution exposure assess
ment are proposed from lessons learned in the
Children’s Centers. 

 
 

 

 

• 

 

 

National Children’s Study subject selection. 
Study populations should be selected to 
maximize spatial-scale exposure contrasts for 
the pollutants of interest. Because multiple 
pollutants are of interest for the National 
Children’s Study, priorities must be estab
lished to allow identification of individuals 
with a wide range of exposure profiles for 
those key pollutants of study interest. 

• Exposure metrics. Because of the large size, 
long duration, and diversity of outcomes 
and exposures of interest in the proposed 
National Children’s Study, the exposure 
assessment effort should rely on modeling to 
provide estimates for the entire cohort, sup
ported by subject-derived questionnaire 
data. Necessary survey information on tem
poral–spatial–physical patterns of activity 
and household characteristics can be col
lected for the entire cohort, and targeted 
exposure substudies can be performed in a 
selected subsample of study subjects. 

• Use of limited substudies for exposure refine
ment. Assessment of some exposures of 

interest will require individual measure
ments of exposures using snapshots of per
sonal and microenvironmental exposures 
over short periods and/or in selected micro
environments. 

• 

 

 

Analytic and interpretation issues. Under
standing issues of spatial–temporal correla
tions of air pollutants, the surrogacy of 
specific pollutants for components of the 
complex mixture, and the exposure misclassi
fication inherent in exposure estimates will be 
critical in analyzing and interpreting findings 
from the National Children’s Study. 

• Modifiers of exposure–outcome relationships. 
“Usual” temporal, spatial, and physical pat
terns of activity can be used as modifiers of 
the exposure/outcome relationships. 

• Use of biomarkers. Biomarkers of exposure 
may be required for evaluation of specific 
exposures that have multiple routes of 
exposure. 

We have learned that there are many chal
lenges to assessing air pollution exposures to 
children. To overcome these challenges, the 
National Children’s Study will need to commit 
extensive resources to exposure assessment 
activities. With optimal subject selection, expo
sure estimates can be modeled for the entire 
cohort, supported by direct measurement of 
selected pollutants in a subset of the study pop
ulation. Biomonitoring is likely to be a valu
able adjunct to the exposure assessment design, 
helping to trace the mechanistic linkages 
between exposures and effects. Prioritization of 
pollutants of study interest and developmental 
periods of study focus would allow optimiza
tion of the study design for the National 
Children’s Study to maximize contrasting pol
lution profiles and enhance the ability to assess 
exposure–response relationships. 
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